Publications

Translation in amino acid-poor environments is limited by tRNA-Gln charging

Pavlova NN, King B, Josselsohn RH, Violante S, Macera VL, Vardhana SA, Cross JR, Thompson CB.

Elife. 2020 Dec 8;9:e62307. doi: 10.7554/eLife.62307. Online ahead of print. PMID: 33289483

Abstract

An inadequate supply of amino acids leads to accumulation of uncharged tRNAs, which can bind and activate GCN2 kinase to reduce translation. Here, we show that glutamine-specific tRNAs selectively become uncharged when extracellular amino acid availability is compromised. In contrast, all other tRNAs retain charging of their cognate amino acids in a manner that is dependent upon intact lysosomal function. In addition to GCN2 activation and reduced total translation, the reduced charging of tRNAGln in amino acid-deprived cells also leads to specific depletion of proteins containing polyglutamine tracts including core binding factor α1, mediator subunit 12, transcriptional coactivator CBP and TATA-box binding protein. Treating amino acid-deprived cells with exogenous glutamine or glutaminase inhibitors restores tRNAGln charging and the levels of polyglutamine-containing proteins. Together, these results demonstrate that the activation of GCN2 and the translation of polyglutamine-encoding transcripts serve as key sensors of glutamine availability in mammalian cells.